Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies

نویسندگان

چکیده

Depending on the physical and geometrical properties of a given porous medium, fluid flow can behave differently, going from slow Darcian regime to more complicated Brinkman or even Forchheimer regimes for high velocity. The main problem is determine where in medium one adequate than others. In order low-speed high-speed regions, this work proposes an adaptive strategy which based selecting appropriate constitutive law linking velocity pressure according threshold criterion magnitude itself. Both theoretical numerical aspects are considered investigated, showing potentiality proposed approach. From analytical viewpoint, we show existence weak solutions such model under reasonable hypotheses laws. To end, use variational approach identifying with minimizers underlying energy functional. propose one-dimensional algorithm tracks transition zone between low- regions. By running experiments using algorithm, illustrate some interesting behaviors our academic cases small networks intersecting fractures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS

Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...

متن کامل

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

Existence and Non-Existence of Radial Solutions for Elliptic Equations with Critical Exponent in E2

where 2* = 2 N / ( N 2) is the critical Sobolev exponent for the embedding H’(52) C L2* (0). Criticality and subcriticality play important rBles concerning the solvability of equation (1.1). Using (by now classical) variational methods one sees that equation (1.1) is solvable i f f has subcritical growth (and satisfies some additional hypotheses), while for f(u) = IuIP-~u the well-known Pohoiae...

متن کامل

Existence and non-existence of solutions for an elliptic system

We study the existence of positive solutions for a system of two elliptic equations of the form  −∆u = a1(x)F1 (x, u, v) in Ω −∆v = a2(x)F2 (x, u, v) in Ω u = v = 0 on ∂Ω where Ω ⊂ RN (N ≥ 2) is a bounded domain in RN with a smooth boundary ∂Ω or Ω = RN (N ≥ 3). A non-existence result is obtained for radially symmetric solutions. Our proofs are based primarily on the sub and super-solution met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM

سال: 2022

ISSN: ['1270-900X']

DOI: https://doi.org/10.1051/m2an/2022016